multidim.models.GaussianMixtureClassifier

class multidim.models.GaussianMixtureClassifier(stop_level=None, **kwargs)[source]

A scikit-learn classification estimator, for any sort of Gaussian mixture model.

A Gaussian mixture module is a collection of labelled Gaussian functions

This is provided mainly to provide a parent class for CDER.

GaussianMixtureClassifier.evaluate(x) Evaluate all gaussians against a pointcloud
GaussianMixtureClassifier.fit(*training) Fit this estimator to training data.
GaussianMixtureClassifier.gausscoords() This is the method to overwrite for specific models!
GaussianMixtureClassifier.get_params([deep]) Pass original kwargs internally.
GaussianMixtureClassifier.plot(canvas[, style]) Plot a CDER model, using matplotlib or bokeh
GaussianMixtureClassifier.predict(pointclouds) Predict labels of given pointclouds, based on previous training data fed to fit().
GaussianMixtureClassifier.runit(pointclouds)
GaussianMixtureClassifier.score(pointclouds, …) Score predicted labels against known labels.
GaussianMixtureClassifier.set_params(**params) Set the parameters of this estimator.