All Modules, Classes, and Methods

An alphabetical list of everything.

homology This module defines the the basic objects for persistence diagrams:
homology.PersDiag(birth_index, death_index, …) Persistence Diagrams and related merge-tree information.
homology.PersDiag.bin(width[, underflow, …]) Count bins on the transformed persistence diagram.
homology.PersDiag.bin_bot(width[, …])
homology.PersDiag.bin_diag(width[, …])
homology.PersDiag.bin_len(width[, …])
homology.PersDiag.bin_top(width[, …])
homology.PersDiag.clip(beta) clip the barcode below beta.
homology.PersDiag.grab(n) clip the barcode, using only the top n entries.
homology.PersDiag.plot(canvas[, transform, …]) Plot the persistence diagram using matplotlib or bokeh.
homology.PersDiag.syzygy(powers) compute the syzygy coordinate of my barcode.
homology.PersDiag.transform([transform, points]) Produce an array of points, obtained by transforming the persistence diagram.
homology.dim0 This Cython module contains the core algorithms for 0-dimension topological algorithms.
homology.dim0.all_roots Reference each vertex directly to its representative root, from MergeTree.
homology.dim0.mkforestDBL Make inclusion tree and parentage linked lists by walking across This method is for np.float64 arrays (for indexing speed).
homology.dim0.unionfind Apply the UnionFind algorithm to compute zero-dimensional persistence diagram.
homology.dim1 This Cython module contains the core algorithms for 1-dimensional topological algorithms.
multidim The multidim class provides user-facing tools for topological data analysis of multi-dimensional data.
multidim.PointCloud(data_array[, …]) PointCloud is a class for embedded, weighted simplicial complexes.
multidim.PointCloud.cache_usage() Compute the size of the distance cache.
multidim.PointCloud.cells(dim) iterate over all Simplex objects of dimension dim.
multidim.PointCloud.check() Run consistency checks on all simplices in all dimensions.
multidim.PointCloud.cover_ball([point_index]) Find a ball that covers the entire PointCloud.
multidim.PointCloud.dists(indices0, indices1) Compute distances points indices0 and indices1.
multidim.PointCloud.from_distances(*args, …) This method is not available for PointCloud, because actual coordinates are needed.
multidim.PointCloud.from_multisample_multilabel(…) Produce a single labeled and weighted pointcloud from a list of samples and labels of those samples.
multidim.PointCloud.gaussian_fit([center]) Fit a normalized Gaussian to this cloud (using SVD).
multidim.PointCloud.make_pers0([cutoff]) Run the UnionFind algorithm to mark connected components of the SimplicialComplex.
multidim.PointCloud.make_pers1_rca1([cutoff]) Run RCA1 and make a 1-dimensional homology.PersDiag for the edge-pairings for cycle generators.
multidim.PointCloud.nearest_neighbors(k) Compute k nearest-neighbors of the PointCloud, using a clever CoverTree algorithm.
multidim.PointCloud.plot(canvas[, cutoff, …]) Plot a PointCloud, decorated by various proeprties.
multidim.PointCloud.reset() delete persistence diagrams, and forget all representative and positivity information.
multidim.PointCloud.sever() Subdivide a SimplicialComplex or PointCloud into several smaller partitions, using the known 0-dimensional persistence diagram.
multidim.PointCloud.unique_with_multiplicity() Look for duplicate points, and mark their multiplicity.
multidim.PointCloud.witnessed_barycenters(k) Build the PointCloud of k-witnessed barycenters, weighted by distance-to-measure.
multidim.SimplicialComplex([stratum]) A class for abstract weighted simplicial complexes.
multidim.SimplicialComplex.cells(dim) iterate over all Simplex objects of dimension dim.
multidim.SimplicialComplex.check() Run consistency checks on all simplices in all dimensions.
multidim.SimplicialComplex.from_distances(dists) Construct a SimplicialComplex from a symmetric matrix of distances.
multidim.SimplicialComplex.make_pers0([cutoff]) Run the UnionFind algorithm to mark connected components of the SimplicialComplex.
multidim.SimplicialComplex.make_pers1_rca1([…]) Run RCA1 and make a 1-dimensional homology.PersDiag for the edge-pairings for cycle generators.
multidim.SimplicialComplex.reset() delete persistence diagrams, and forget all representative and positivity information.
multidim.covertree This module contains the essential classes for the “Cover-tree with friends” algorithm, namely:
multidim.covertree.CoverLevel(covertree, …) A thin class to represent one level of the filtration in a CoverTree.
multidim.covertree.CoverTree(pointcloud[, …]) An efficient and convenient implementation of the “Cover Tree with Friends” algorithm.
multidim.fast_algorithms This Cython module contains core algorithms for multidimensional data.
multidim.models This module contains classifiers based on the SciKitLearn framework.
multidim.models.CDER([stop_level]) The CDER (Cover-Tree Differencing for Entropy Reduction) algorithm for supervised machine-learning of labelled cloud collections.
multidim.models.GaussianMixtureClassifier([…]) A scikit-learn classification estimator, for any sort of Gaussian mixture model.
timeseries This module defines tools for geometric analysis of one-dimensional (time-series) data sets.
timeseries.jagged(persdiag, index) Produce a piecewise-linear function that matches the given persistence diagram.
timeseries.Signal(values[, times])
timeseries.Signal.feature([index]) return the region of a feature, with vertical displacement threshold tau.
timeseries.Signal.feature_match(other[, …])
timeseries.Signal.from_pointcloud(points, …)
timeseries.Signal.gap() Return the largest homology.
timeseries.Signal.height_measure([sigma, …]) Use a simulation to estimate the height-measure of an interval.
timeseries.Signal.interval_height(interval) the indicator-persistence function for intervals, called h_U(A) in the notes.
timeseries.Signal.iter_features([min_pers, …]) walk the feature tree.
timeseries.Signal.iter_intervals() return the itertools combinations iterator over all sub-intervals.
timeseries.Signal.iter_windows_by_index(window) Produce equal-length Signals using a sliding-window on self.
timeseries.Signal.jagged([beta]) call timeseries.jagged() on this Signal’s own persistence diagram.
timeseries.Signal.normalize() change this Signal object to have mean = 0 and max-min = 1
timeseries.Signal.plot(canvas[, title]) Plot the Signal.
timeseries.Signal.profile(arch[, normalize, …]) produce profile by dragging an archetype across self, looking for matches.
timeseries.Signal.sample_near([sigma]) return a Signal object that is L2-near self in the normal distribution.
timeseries.Signal.self_similarity(window[, …]) Compare sliding windows of this Signal using a distance function.
timeseries.SpaceCurve(tn[, px, py, pz, …]) SpaceCurve is a Python class for studying curves in \(\mathbb{R}^2\) or \(\mathbb{R}^3\).
timeseries.SpaceCurve.accel(rate) Change time parametrization, to represent a constant tangential acceleration (or deceleration).
timeseries.SpaceCurve.arclength_param() Change time parametrization to the universal speed=1 arclength parametrization.
timeseries.SpaceCurve.auto_bin([num_bins, …]) Count bins on the transformed persistence diagrams of -Speed/7 (so it is expected to be between 0 and 100) -Climb/3 (so it is expected to be between 0 and 100) -Curvature*10000 (so it is expected to be between 0 and 100) -Torsion*10000 (so it is expected to be between 0 and 100) -Bank*100/(pi/4) (==grade, between 0 and 100)
timeseries.SpaceCurve.clean_copy([cleanup_func]) Make copy in which a cleanup function performed on the data.
timeseries.SpaceCurve.compute() Compute some nice invariants and store them to self.info.
timeseries.SpaceCurve.copy() make an identical copy of self.
timeseries.SpaceCurve.duration() return string of duraction of SpaceCurve, converting integer nanoseconds to string seconds.
timeseries.SpaceCurve.featurize([…]) A convenience function to compute everything we think might be important.
timeseries.SpaceCurve.lift_and_mass() Produce the terms of the force-balance equations, to help derive coefficient-of-lift and mass from pure trajectory information.
timeseries.SpaceCurve.lift_profile([…]) histogram of the lift_and_mass by lift.
timeseries.SpaceCurve.load(filename) Simple CSV reader.
timeseries.SpaceCurve.mass_profile([…]) histogram of the lift_and_mass by mass.
timeseries.SpaceCurve.plot(canvas[, title, …]) Plot the SpaceCurve in 3D.
timeseries.SpaceCurve.reparam(rate) Change time parametrization, to represent a constant change of speed.
timeseries.SpaceCurve.reverse() Reverse the time parametrization of the SpaceCurve.
timeseries.SpaceCurve.signature_curve() Olver/Boutin signature curve.
timeseries.SpaceCurve.slide([window, …]) Produce equal-time SpaceCurves using a sliding-window on self.
timeseries.SpaceCurve.snip([time_step, …]) Cut this SpaceCurve into equal-time snippets.
timeseries.test_mollifier Test the mollifier code
timeseries.test_mollifier.TestMollifier
timeseries.test_mollifier.TestMollifier.setup()
timeseries.test_mollifier.TestMollifier.setup_method(…)
timeseries.test_mollifier.TestMollifier.teardown()
timeseries.test_mollifier.TestMollifier.teardown_method(…)
timeseries.test_mollifier.TestMollifier.test_refinement_counts()
timeseries.test_mollifier.TestMollifier.test_resonable_reconstruction()

Previous topic

homology.dim1

Next topic

homology